
Graphs and Combinatorics 1, 13-21 (1985) 

Graphs and 
Combinatorics 
�9 Springer-Verlag 1985 

The Maximum Number of Disjoint Pairs 
in a Family of Subsets 

N. Alon 1. and P. Frankl  2 

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, 
USA 
2 U.E.R. Math6matiques, Universit6 de Paris, VII, Paris, 75005 France 

Abstract .  Let .~" be a family of 2 "+1 subsets of a 2n-element set. Then the number of disjoint pairs 
in ~" is bounded by (1 + o(1))22". This proves an old conjecture of Erd/Ss. Let ~" be a family of 
2 tl/tk+l~+~" subsets of an n-element set. Then the number of containments in ,~ is bounded by 

/ I~1 
'X 

(1 - 1/k + o(1)) k 2 :" This verifies a conjecture of Daykin and Erd/Ss. A similar Erd6s-Stone type 

result is proved for the maximum number of disjoint pairs in a family of subsets. 

I. I n t r o d u c t i o n  

Let : be a family of m distinct subsets of X = {1, 2 . . . . .  n}. Let d(,~) ( c ( : ) )  denote 
the number  of  disjoint (comparable, respectively) pairs in ~-. Tha t  is: 

a(:) = I { { F , r } :  F , F ' ~ , F n e '  = O~1 

c(:) = I{(F,F'): F , F ' ~ , F  = F'}I. 

Define 

d(n,m) = max{d(~ ) :  I,~1 = m}, 

c(n,m) = max{c (~ ) :  I~-I = m}. 

Several years ago Erd/Ss 14] raised the problems of  determining or  estimating 
d(n, m). A similar problem for c(n, m) is considered in i3]. 

Example 1.1. Let X 1 U X 2 U.o. U X k be a par t i t ion of  X, where [n/k] < Igil < Fn/k'l. 
Suppose m < k '2  t'/kj and let ~r be a collection of  subsets of Xi with 
[mlkJ < Idil < Fmlk], I~r + 1~/21 + " "  + I~r = m. Then 

1 m 
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Example 1.2. Let X 1, X 2 . . . . .  g k and m be as in Example 1.1. Let ~ be a collection of 
subsets of X 1UX 2 13...13X~, each containing X1 13X2 13...UXi-1, where 
[m/kJ < I~1 -< [m/k], Is~xl + 1821 + " "  § I~l  -- m. Then 

( 1 ) ( m )  

2"  

The following theorems show that these examples are essentially best possible. 

Theorem 1.3. For every positive integer k there exists a positive fl = fl(k) such that if  
m = 2 tl/tk+l)+6)n where 6 > 0 then 

1 m 
d ( n , m , < ( 1 -  ~ ) ( 2 )  + 0(m2-a'2,. 

Theorem 1.4. For every positive integer k there exists a positive f f  = if(k) such that i f  
m = 2 ~x/r where 6 > 0 then 

1 m 
c ( n , m ) < ( 1 -  ~ ) ( 2 )  + 0(m2-a'n'*'). 

The case/~ = 1 of the above theorems was conjectured by Daykin and Erd6s [7]. 
The general case settles a problem of Erd6s [7 1 namely it shows that an ErdSs- 
Stone type result holds. Also the case k = 2 implies another conjecture of Erd6s in a 
much stronger form [4]. 

Our paper is organized as follows. In Section 2 we outline a direct probabilistic 
proof for the case k = 1 of both theorems. 

In Section 3 a partition lemma for arbitrary families of sets is proved and applied 
to verify the theorems with a somewhat weaker estimate of the remainder term. 

In Section 4 we combine the probabilistic approach with results of Bollob~s, 
Erd6s and Simonovits on supersaturated graphs and hypergraphs to prove both 
theorems in full strength. 

In Section 5 we outline various generalizations dealing with the number of 
chains of given length, the number of pairwise disjoint r-tuples of sets, etc. 

In the last section open problems and conjectures are mentioned. 

2. The Basic Probabilistic Argument 

Let ~ be a family consisting of m = 2 ttl/2)+a)" subsets of X = {1,2 . . . . .  n}, where 
6 > O. We claim that 

d($ r) < m 2-62/2. (2.1) 

Note that this inequality, when applied to #" U {X - F: F ~ a r } shows that 

C(#-) < 4m 2-62/2. 

To prove (2.1) suppose it is false and pick independently t members A 1, A 2 . . . . .  At 
of #" with repetitions at random, where t is a large positive integer, to be chosen 
later. We will show that with positive probabilitylA 1 U A 2 13... 13 A,I > n/2 and still 
this union is disjoint to more than 2 n/2 distinct subsets of X. This contradiction will 
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establish (2.1). In fact 

Define 

Clearly 

Pr(IA~ U A 2 U. . .  U A,I < n/2) < E Pr(Ai = S, i = 1 . . . . .  t) 
S c X ,  lSl<nl2 

< 2"(2"/2/2((1/2)+~)") * = 2"0-~o. (2.2) 

v(B) = [{A ~ ' :  B n A  = 0}1. 

~" v (B)=  2d(~')  > 2m 2-~/2. 
B ~ ..~ 

Let Y be a random variable whose value is the number  of members  B e ~ which are 
disjoint to all the A~ - s (1 < i < t). By the convexity o f z  t the expected value of Y 
satisfies 

I__.m(~V(B)' ~ i m (2d( .~) 'y  2ra~_,a,/2. 
E(Y)  = B~,(v(n)lm)' = m* \ m ,] > -~" \ - - ' m - ]  > 

Since Y < m we conclude that  

Pr(Y  >_ m 1-ta2/2) >__ m -ta212. (2.3) 

One can check that for t = L1 + 1/(3 - 62/4 - ~3/2)J, rn 1-ta~/2 > 2 "/2 and the 
r ight-hand side of(2.3) is greater than the r ight-hand side of (2.2). Thus, with positive 
probabili ty,  IA, U A 2 U. . .  U A,I > n/2 and still this union is disjoint to more  than 2 "/2 
members  of F. This contradict ion implies inequali ty (2.1), thus proving Theorems 
1.3 and 1.4 for k = 1. [ ]  

3. A Part i t ion  L e m m a  for Fami l i e s  o f  Subsets 

For  0 <V < 1  let H(V) denote the binary entropy,  i.e., H(V)=vlog2(1/~  ) + 
(1 --  ) ' ) log2(1/(1 --  T))- 

L e m m a  3.1. Let u, fl, ),, e, a be positive constants satisfying 0 < u, fl, 8 < 1, 1 < a < 2, 
H(T) < �89 log2a. Let ~ be a family of a" subsets of  X = { I, 2 . . . . .  n}. Then there exists a 
partition ~o O ~ t  O . . . U ~ of ~ and subsets )(1, X2 . . . . .  Xs c X satisfying the follow- 
ing four conditions: 

(i) I~ol < 8 I~-]. 

(ii) I~l  -> ~u u I~1, where M = max {t: 2 c(1-#)'+u(~))" > e#a"}.  

(iii) IF n ( x  - x,)[ < ~ IX - x,[ holds for all F ~ 4 .  

(iv) For every Yi c X i satisfying I Y~l ->/~lX~l 

I { f ~ :  I F n  Y~I < YlY~I} I < u IF, I. 

Remark. One can easily check that  if u, fl, % ~ and a are as above and n 
> no(u, fl, ?, e, a) then the number  M defined in (ii) satisfies 
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M < [log2 log2 al/2flog2(1 - fl)[. 

Note that this bound is independent of n. 

Proof  o f  Lemma 3.1. Suppose that disjoint subfamilies ~1, ~ 2 , ' " ,  4 - 1  of 3*-, 
together with subsets X 1, X2,. . . ,  X~_I of X, satisfying (ii)-(iv) have already been 
defined. Set fro = o~ - (o~ 1U.. .  U o~/-1). If [f#01 < e I~1, define o~ 0 = if0 to complete 
the proof. Otherwise, define Zo = X. Clearly (fro, Z0) satisfy (iii)(as ( 4 ,  X~)). Sup- 
pose that a pair (ffj, Zj) satisfying (iii) has already been defined. If (iv) does not  hold 
for this pair, then it fails for some Y~ c Zj. In this case set ffj+l = {Ge fgj: IGO Yj[ 
< ~ IY~I} and Zj+I -- Zg - Yj. Clearly (fCj+ 1, Zj+x) satisfy (iii). Continue this proce- 
dure to obtain a pair (fCj, Zj) satisfying (iv). (Since IZjl is strictly decreasing during this 
procedure it must produce such a pair.) Set 4 = ffi, Xt = Zj. To complete the proof 
we show that 4 satisfies (ii). Since 4 = ffi, we have IX~I _< n ( 1 -  fl)i and 
141 >- ~l~ol -> ~ i l~ l .  Thus we must show tha t j  < M. However, this follows from 
the definition of M and 

ecdl~l < 1 4 1 <  2'x" ~ -  ( l X  - X ' l )  < x,, r 

(Here we used a special case of Chernoff's inequality [6].) []  

We now apply Lemma 3.1 to obtain a somewhat weaker version of Theorem 1.3. 
Let ~ be a family of m = 2 ~247 subsets of X = { 1, 2 . . . . .  n}. Apply Lernma.3.1 
to o ~ with a = 2 ~t/~+t~+~, with positive small constants e = a and ? > 0 sufficiently 
small with respect to a, e, ~ and with fl = ?8/k. Let 4 and X~ be the subfamilies o f ~  
and the subsets of X guaranteed by our Lemma. Since M is bounded by a function 

independent of n, (ii), (iii) imply that if n > no, [X,[ > ~ + . (Otherwise 

t41 < 2 m~ 2 m~'-m~, violating (ii).) We need the following simple observation. 

Proposition 3.2. I f  Z1, . . . ,Z~+I c X,  [Z,t > n + -~ , then there are 1 < i < 

g 
j <_ k + l with lZ~N Zj[ >_ ~n. 

Proof. If this is false then iz , -  u u > ~ + - n and 

(k + 1)~5 ( k +  1)~  
t h u s l Z ~ U . . . U Z k + l l > n - ~  - - - f - - n - -  2 - ' n  = n, which is impossible. []  

Therefore, among any k + 1X~-s there are two, say Xi, Xi,, with [x~n x+.l _> ~n. 

Suppose IX~ N Xrl > ~ n. Applying (iv) twice we conclude that the number of disjoint 

pairs F,F'  with F e 4  and F ' s 4 '  is <(1 - (1 - ,)2)14114,1 < 2~14114,1. (Indeed, 

at least (1 - 8)141 members of 4 contain a subset of at least k n elements ofX~ n x~, 
c .  

and each such subset has a nonempty intersection with at least (1 - 8)14,1 members 
of 4, . )  
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Define a graph on the set of vertices ~- where F, F' E #- are joined iffF N F' = ~,  

IXj N Xj, I < k n, where F ~ ~ ,  F' ~ ~ , .  By Proposition 3.2 our graph contains no and 

complete subgraph on k + 1 vertices. Thus, by Turan's theorem, it has at most 

1 - ~ -  edges. This, (i), and the preceding discussion imply 

( 1"~ mz ( k )  m2 
d(.~)_< 1 -~j-~-+ I~o11~1 + ~2el~[l~,l < , , , ,  1--  -~---+ 3.era 2. 

Since ~ > 0 was arbitrary, we conclude that 

( ' ) ( : )  < 1 - + o ( l )  . 

This proves a weaker version of Theorem 1.3. A similar argument yields a proof of 
Theorem 1.4 with a somewhat weaker estimate of the remainder term. We omit the 
details. []  

4. The Proof  of  the Erdiis-Stone Type Results 

In this section we prove Theorem 1.3 in detail and indicate how to prove Theorem 
1.4 similarly. Suppose k > 0, and let ~" be a family of m = 2 "/(k+1~+6)" subsets of X 

( 1 ) ( m )  
= { 1 , 2 , . . . , n } , w h e r e S > 0 .  We must show that d(o~) < 1 - ~  2 +O(rn2-p62) 

for some B = ~(k) > 0. Suppose 

1 m w h e r e e = m -  < d ( : )  = 1 k + e 2 ' 

Let G be a graph on the set of vertices ~" in which A, B ~ ~ are adjacent iffA N B 

( )(2) = Z. Clearly G has 1 - ~ + e edges. Let t be a large integer, to be chosen 

later, and let K = Ktk+~ (t) denote the complete (k + 1)-partite graph with t vertices 
in each vertex class�9 Our proof is organized as follows. First we apply the so-called 
theory of supersaturated graphs to obtain a lower bound for the number of copies of 
K in G. Afterwards we use our probabilistic argument to obtain an upper bound for 
this number. Combining the two bounds we obtain the desired result. We begin with 
the following simple lemma. 

L e m m a  4.1. For s < m the number o f  induced subgraphs o f  G on s vertices with > ( 1 
1 -  -k + ~ 2 edges is at leas t - - f -  . 

( 1 )C) 
�9 Thus, if Proof. The average number of edges in such a subgraph is 1 - ~ + e 2 

N is the number of desired subgraphs then 



18 N. Alon and P. Frankl 

((m)_ (s 
The desired results follows. [] 

By a result of Bollobfis, Erdfs and Simonovits I-2] if0 < ~ < 1/k then any  graph 
/ 

1 \ /  N 

( e ) ( s )  edges contains a copy of K(k+x)(t ) on s vertices with > 1 - ~ + ~  2 for 
\ 

V- stlogs J 
t = | k l o g  1/e ' where st is an absolute constant. Thus, each of our N subgraphs 

: m -  (k + Ot'  
contains such a copy, and since every copy is obtained at most _[, s - (k + 1 ) t )  times 

/ ( 7 ~ I k + + ~ ; : ) > k ' e ( m ~  (k+l)' the total number of K-s in G is at least N - -2 -  ~,sJ " 

Set s = m:, where 0 < f < 1 will be chosen later, to obtain: 

Lemma 4.2. G contains at leastkm(l-f)(k+l)t-g copies of K(k+l)(t) where t = Istf  1 
2 ~ "  

[] 
We now establish an upper bound for the number of K-s in G. Indeed, let us pick 

at random a class of t distinct members A1 . . . .  , At of ~' .  The probability that 
n 

IU[ffil Ail -< ~ is clearly bounded by 

../2Jsl\ I:l,~l \ 
Z t t 

Thus, if we choose at random k + 1 such classes the probability that  the 
n 

cardinality of the union of at least one of these classes has size not exceeding ~ is 

at most (k + 1)2 "(1-6~ However, this condition is necessary if these classes are the 
classes of vertices of a K = K(k+l)(t) in G. We thus proved the following. 

L e m m a  4.3. G contains at most (k + 1)2 n(1-60/'-\k+l 
i 

~':') (k+l)icopiesofK(k+l)(t) �9 

Combining Lemmas 4.2 and 4.3 we conclude that 

m(1-f)lk+l)t-g _<< 2n(i-'~t) m(k+l)t. 

Substitute m = 2 ((1/k+1)+6)" to get 

(1 + (k + 1)6)((1 - f)(k + 1 ) t -  g)_< t(k + 1)(1 + (k + 1)6) + (1 - 5t)(k + 1), 

i.e., 

k + l  +g(1 + ( k + 1 ) 5 )  
t_< 

(k + 1 ) 5 -  (k + 1)f(1 + (k + 1)5)" 

I-Tstf stf Recall that t = / ~ g  / _> ~g and that we are still free to choose 0 < f < 1. Choosing 



The Maximum Number of Disjoint Pairs in a Family of Subsets 19 

6k ~t 1_ 62 
f = - - "  Y, where 7 < this implies that for sufficiently small 6, g > 7, i.e., 

4k' - 5  
( 1 m_(X/s)62,)(2). \ 1  - + 

Since 7 depends only on k, Theorem 1.3 follows. []  

The proof of Theorem 1.4 is similar although slightly more complicated. Again, 
we begin with a family ,~- of cardinality m = 2 ~/~k+~+~" and assume 

( 1 ) ( 2 )  c(.~-) = 1 -  ~ + m -a . 

We let G denote the graph on the set of vertices ~ in which A, B e.~- are joined iff A 
B or B ~ A. By I'1] G contains at least 7(k)m k+x -g Kk+~-s each corresponding to a 

chain A~ c A2 ~ "'" ~ Ak+: of members of F, where 7(k) is a constant dependent 
only on k. A straightforward averaging argument shows that there exists a partition 

of where Lk- X j ---I.~,l --- such that the number of 

chains A~ = A 2 . . . c  Ak+ ~, where AiE,~ is > 2(k).m k+~-g. Consider the (k + 1)- 
uniform (k q-1)-partite hypergraph H on the set of vertices ~" in which 
(AI . . . . .  Ak+l) is an edge iff Ai E,~  and Ax ~ .." ~ Ak+~. By [5, Theorem 1"*] if g' 
> ~ and m is sufficiently large then H contains at least #(k)m~+~)m-r copies of K 
= the complete (k + 1)-partite (k + 1)-uniform hypergraph with t vertices in each 
vertex class. However, each copy of K corresponds to a collection of k + 1 t-classes 
of members of ~-, {A~}~=x . . . . .  {A/~+I}~=1, where A~ : A~+ 1 for 1 < i < t, 1 < l < t 
and 1 _< j < k. On the other hand, our probabilistic argument easily supplies an 
upper bound of p(k) m (k+~)~ 2 "(~-a~ for the number of these collections. Thus, 

p( k )m(i + , ), 2.(,-ao > i~( k ) m(" + ' " m-r ''~'. 

2 
Substituting m = 2 (v(~+~)+a)~ and choosing t = ~ we obtain that g' >_ v'(k)6 k+~, i.e., 

9 ~ v(k) 6k+~. This establishes Theorem 1.4. [ ]  

5. Generalizations 

For r >__ 2 and for a family ~- of subsets of X define 

d,(~') = I({F~,F2 . . . . .  F,}: F~ . . . . .  F ,~ ~-, F~ n . . .  n F, = ~}1. 

Thus d,(,~) counts the number of r-tuples with empty intersection. (Note that d2 (~') = 

Theorem 5.1. Suppose I~1 = m > 2 (t'-t/')+6)" where 6 > 0 and r > 2. Then d , ( ~ )  

= o ( 7 ) ( a s n ~  oo,6, rfixed.) 

Note that one can easily t~nd an ~" of size -~ 2 (1-1/" with d,(,~) = r 

Outlined Proof. Apply Lemma 3.1 with sufficiently small constants a, fl, Y, e, and with 
a = 21-x/'§ to obtain subfamilies ~ of ~ with corresponding subsets Xi of X. 
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r -  1 6)  
Clearly (as in Section 3) if n is sufficiently large then [Xil > + n. Conse- 

r 

r6 
quently, any r of the Xg-s have an intersection of size > -~- n. If fl is small enough r 

applications of condition (iv) of Lemma. 3.1 imply (as in Section 3) that the number 
of r-wise disjoint r-tuples of members of ~ is < (I - (1 - e)')m" + em'. Since e is 
arbitrary the result follows. []  

For  s > 2 and a family ~ define p~(~') = [{{F~,Fz . . . . .  Fs}: F ~ ,  F~ fqFj = 
for 1 < i < j < s}[, i.e., p~(~) counts the number of pairwise disjoint s tuples. (Note 
that pz (~)  = d2(~-)). 

Theorem 5.2. Suppose I~1 =m>2((1/s)+6)~ where 6 > 0  and s >  2. Then 

ps(~-) = o ( ( 7 ) ) ( a s n ~ o o , ~ , s f i x e d ) .  

Again note that one can easily find an ~ of size - 2 tl/~)n with p~(~) = t2~(l~l~). 

Outlined Proof. Apply Lemma 3.1 with sufficiently small e, fl, 7, ~ and with a = 

2 ttvs)+~) to get ~ and X~. As before, if n is large enough IXil > + ~ n. By Pro- 

position 3.2 among any s of the X~-s there are two, say X~, Xr, with IX~ fq Xrl ___ 
6 

n. Condition (iv) of Lemma 3.1 implies, again, the desired result. []  
s - 1  

F o r s  ___ 2 a n d a f a m i l y ~ d e f i n e c s ( ~ )  [ { ( ~ , F  2 . . . . .  Fs):F~e~',F~ ~ :F2 ~ ... 
F,}[, i.e., c~(~) is the number of chains of s members of 5 ~. (Note that  c2(~ -) 

- -  

Theorem 5.3. Suppose I~1 = m > 2 {(~/~)+~)~ where 6 > 0 and s > 2. Then o((m)) 
Here also there is an ~ of size ~_ 2 ~/')~ with c , (~)  = t2,(l~l ') .  The proof  is 

similar to the previous ones. We omit the details. 

Remark. Theorems 5.1, 5.2 and 5.3 can also be proved using probabilistic arguments, 
as in Section 2. Moreover, the probabilistic method supplies better estimates of the 
quantities discussed. However, since this involves somewhat tedious computations, 
we preferred presenting the proofs via Lemma 3.1. 

6. Concluding Remarks and Open Problems 

Recall that in Section 2 we proved that if m = 2 ((1/:)+~)n then 

c(n, m) < 4m 

This inequality does not appear to be best possible, and in particular it does not 
seem to describe the asymptotic behavior of c(n, m) for m = 2 (I/2)n- n d. 

Example 6.1. Suppose X = X 1 U X2, IXd = Ix21 = n/2. Define 
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= (F X: IF n -< d), 

.~(2 d) = {F = X: IX x -- FI < d}. 

Set .~  = .~(d) = ~(()  U ,~-(2 a). Then  

m=l~l=2'"CE'+l~(n/i2)=12(2'n/a'na)andc(~)>2-2a-l(2)', =o 

This example  disproves a conjecture of Erd6s  [4]. We suspect that  the following 
is true. 

Conjecture 6.2. 

lim c(n, 2(n/2)" nd)/(2 (n/2)" ha) 2 = O. 
d~oo 

Recall the definitions of d , (~) ,  ps(ff)  and  c s (~ )  given in Section 5. It would be 
interesting to describe the a sympto t i c  behav ior  of  these functions. 

We conclude the paper  not ing tha t  all our  results remain  true if we replace 
disjointness by having sufficiently small  intersection. Fo r  example,  our  methods  
easily imply that  if 6' < 26 and I~1 > 2((x/2)+'~)n then 

I{{F,F'}:F,F'~, , IFf~F'I  < 6' .n}l  = o ( 1 ~  I) 

as n ~ 0% 6' < 26 fixed. 
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